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LETTER TO THE EDITOR

Band crossing and novel low-energy behaviour in a mean
field theory of a three-band model on a Cu–O lattice

D I Golosov†, A E Ruckenstein‡ and M L Horbach§
Department of Physics, Rutgers University, Piscataway, NJ 08855-0849, USA

Received 2 February 1998

Abstract. We study correlation effects in a three-band extended Hubbard model of Cu–O
planes within the 1/N mean field approach in the infiniteU limit. We investigate the emerging
phase diagram and discuss the low energy scales associated with each region. With increasing
direct overlap between oxygen orbitals,tpp > 0, the solution displays a band crossing which,
for an extended range of parameters, lies close to the Fermi level. In turn this leads to the
nearly nested character of the Fermi surface and the resulting linear temperature dependence
of the quasi-particle relaxation rate for sufficiently largeT . We also discuss the effect of band
crossing on the optical conductivity and comment on the possible experimental relevance of our
findings.

A number of versions of the extended three-band Hubbard models have been studied recently
[1–5] with the expectation that they are relevant to the physics of high-Tc cuprates. The
complexity of these models leads to a broad spectrum of phenomena, from metal–insulator
transitions, charge and spin-density waves and superconductivity to more mundane single
particle band-structure effects. Most of the studies searched for novel low-energy excitations
which would explain the departures from Landau’s Fermi liquid phenomenology implicit in
many of the experimental results in the normal state of the cuprates.

In the simplest discussions based on mean field theories of strongly correlated Fermi
systems, such non-Fermi liquid behaviour occurs above some small energy scale,Tcoh.
Already within the three-band models there are a number of different physical mechanisms
resulting in the appearance of small energy scales, namely the proximity of the chemical
potential to a van Hove singularity in the single-particle density of states [6], heavy fermion
behaviour [4] and the Brinkman–Rice metal–insulator transition [4, 5, 7], and the effects of
strong antiferromagnetic spin fluctuations in the paramagnetic state [7, 8].

In this letter we focus on a band-crossing which arises upon hole doping (n0 > 1) for
values of the O–O hopping matrix elements larger than a filling-dependent critical value,
t cpp > 0. In the vicinity of tpp = t cpp the lowest (Cu-like) band is only weakly dispersing
along the Brillouin zone boundary leading to a nearly one-dimensional ‘extended’ van Hove
singularity in the density of states (cf [9]). In addition, once the doping is increased to a
particular concentration,n0 = ncr , the band-crossing occursat the Fermi level. (This rare
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situation in the context of three-dimensional band-metals is best exemplified by the self-
intersecting Fermi surface of graphite [10].) Moreover, atncr , the resulting Fermi surface
(FS) is perfectly nested, with an incommensurate nesting wave vector. A special feature
of this situation is that the nearly nested character of the Fermi surface survives for a wide
range of dopings aroundncr . In particular, in the vicinity ofncr , the resulting low-energy
scale varies with doping slower (Tcoh ∝ (n0−ncr)2) than that expected from the saddle-point
van Hove scenario (∝ −|n0− ncr |/ ln |n0− ncr |).

We emphasize that in the experimentally interesting case of hole doping, the band-
crossing only occurs for a particular sign oftpp(> 0). Under these conditions the van Hove
singularity of the density of states does not scan the Fermi level with increasing doping,
and thus the van Hove mechanism discussed in [6] cannot be realized. Since, generically,
the crossing of two eigenvalues of a Hermitian operator requires the fine tuning of three
real parameters [11], band-crossing in two dimensions is typically avoided. Our situation
is special as the mean-field Hamiltonian can be reduced to a real matrix, and thus crossing
may occur through the tuning of only two parameters (e.g. the two components of the
momentum,(kx, ky)). We note that avoided crossing along a line in two dimensions (or
at a point in one dimension) is responsible for the heavy fermion regime of our mean-field
solution [12].

In this letter, we concentrate on the model withtpp > 0. We note that this choice
disagrees with the situation which apparently takes place in all the cuprates, where the
estimates extracted from LDA calculations [13, 14] imply thattpp is negative (however, see
[15]). In YBCO near optimal doping the corresponding FS agrees qualitatively with the
ARPES results [16]. Some questions, however, arose in the context of BiSCO where two
sheets appear in one of the earlier interpretations of the photo-emission results [17], and
there remains controversy of whether the origin of the two sheets is a lattice superstructure
effect, bilayer splitting or some other effect. The main reason for studying a model with
tpp > 0 is the fact that, as we will see shortly, a rich array of many-body and single-particle
phenomena arise in a natural way. It is interesting, however, that in some cases one is able
to draw a parallel between our results and the experimental observations. If this model has
any relevance it can only be so due to strong correlations which are believed to be crucial
to the physics of the cuprates [18], and are not properly accounted for within the LDA.
To exemplify this point, imagine starting with atpp = 0 tight binding model with a large
value of the HubbardU , and deriving an effective low-energy Hamiltonian by ‘integrating
out’ charge fluctuations on the Cu-sites. In this way one obtains an effective O–O hopping
amplitude which changes sign with increasingU . In theU →∞ limit this yields t effpp > 0
(cf [19]).

Our starting point is the extended three-band Anderson–Hubbard Hamiltonian describing
the interaction between the oxygen px, py (Pxσ , Pyσ ) and copperdx2−y2 (dσ ) orbitals. As
depicted in figure 1, the Hamiltonian includes the direct hopping of electrons between
oxygen sites (tpp) and a hybridization between copper and oxygen orbitals (tpd ). Apart
from the Hubbard repulsion at the copper sites—here after taken as infinite—we also take
into account the nearest neighbour Coulomb interaction,V , between copper and oxygen.
The infinite Hubbard repulsion is incorporated through the replacement of the original copper
orbitals operators,dσ , by the projected fermion operators,d̃σ = dσ (1−n−σ ) which eliminate
double occupancy at the copper sites; herenσ ′ = d†σ ′dσ ′ is the local number operator for the
orbital with spinσ ′ in the hole representation. Below, we treat this Hamiltonian by a simple
mean field (Hartree–Fock) approximation: as explained in [5, 20], the factorization of the
equations of motion requires a generalization of the usual Wick’s theorem. The resulting
mean-field equations can be adequately described by the quasi-particle Hamiltonian [21]
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Figure 1. The arrangement of copper d-orbitals and oxygen p-orbitals in the CuO2 plane, with
signs ‘+’ and ‘−’ denoting the phase factors in the atomic wave functions, which result in the
alternating signs of hopping terms in the tight-binding Hamiltonian.
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Here t ′pd =
√

1− nd(tpd + V λ/8tpd), ε′d = εd + λ + 4npV and ε′p = εp + 2ndV are
renormalized values of the hybridization amplitude, and local energy levels of the copper
and oxygen orbitals,tpd, εd, εp, respectively. Given1(0) = εp − εd and the total filling,
n0 = nd + 2np, the values of the local copper (nd ) and oxygen (np) hole occupancy, the
energy shift,λ, and the chemical potential,µ, are to be determined self-consistently from
the mean-field equations (MFE)
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whereµ̃ = µ−ε′d , 1 = ε′p−ε′d , N is the number of copper sites andnF (x) = [expβx+1]−1

is the Fermi–Dirac distribution function. Finally, the quasi-particle energies,ωi(k) =
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ε′d + εi(k), i = 1–3, should be determined from the cubic secular equation forεi(k),
namely

ε3− 21ε2+
[
12− 4t ′2pd

(
sin2 kx

2
+ sin2 ky

2

)
− 16t2pp sin2 kx

2
sin2 ky

2

]
ε

+41 t ′2pd

(
sin2 kx

2
+ sin2 ky

2

)
− 32t ′2pd tpp sin2 kx

2
sin2 ky

2
= 0. (5)

Equations (2)–(5) define the filling-dependent bandstructure. The no double occupancy
constraint manifests itself through two important effects: (i) the upward shift of the copper-
like band and (ii) its associated band narrowing. The first occurs as a result of the no
double occupancy constraint which forces the copper component of the lower band to lie
within a hybridization width of the chemical potential, while the band narrowing is due to
the
√

1− nd factor multiplyingtpd , and reflects the fact that coherent hybridization involves
rare charge fluctuations at the copper sites. The interplay between these correlation effects
and the band structure leads to the rich phase diagram shown in figure 2. To summarize the
possible behaviours, imagine starting with the bare copper level below the oxygen level,
1(0) > 0 and increasing the filling fromn0 = 0. We will consider the1(0) versusn0 plane
for two qualitatively different cases,tpp < t0 and tpp > t0, wheret0 = √α1|tpd | + α2V with
the two constants given byα1 = (4

√
2−5)/π ≈ 0.21 andα2 = [π−4(

√
2−1)]/4π ≈ 0.12.

In each case we single out three1(0) = constant cuts, denoted by A, B, and C in the figures.
For tpp < t0, and for small values of1(0) (cut A in figure 2(a)) one starts with conventional
metallic behaviour forn0 � 1. Below half filling one then scans the chemical potential
through the van Hove singularity (saddle point) switching from hole-like to electron-like
FS. The situation atn0 < 1 is reminiscent of what would happen atn0 > 1 if we reverse the
sign of the O–O hopping. The low energy scale is provided by the difference between the
Fermi level and the saddle point energy (see figure 3). Although in the case of the Fermi
energy equal toεvHs one does get the linear temperature dependence of the quasiparticle
relaxation rate [6], the corresponding crossover temperatureT ∗ above which the relaxation
rate becomes linear inT is in this case expected to scale as(n0−nvHs)/ ln |n0−nvHs | [22],
wherenvHs is the value of filling corresponding tõµ = εvHs . The physical consequences
of the presence of a small energy scaleµ̃ − εvHs have been discussed in the literature in
great detail [23].

With further increasingn0 the chemical potential scans through another van Hove
singularity associated with the bottom of the lower oxygen-like band, which, atT = 0,
causes a negative jump in the compressibility, dn0/dµ. Above this doping concentration,
dn0/dµ < 0, and the system is thermodynamically unstable with respect to phase separation.
Within the region of instability, the absolute value of the (negative) compressibility increases
and, at some point, diverges. The compressibility then changes sign and the system enters
a normal metallic phase with a large and rapidly decreasing value of the compressibility.

The shape of the unstable region is highly sensitive with respect to the parameters of
the Hamiltonian. The phase separation would be circumvented altogether in the presence of
a real long-ranged Coulomb interaction. Beyond half-filling the bottoms of the two lowest
bands coincide (‘tangency’) beyond which a crossing of the Cu- and lower O-like bands
(conic point) emerges. At sufficiently large filling the chemical potential scans through the
band crossing energy. Along cut B in figure 2(a) a new feature arises atn0 = 1 (between the
two van Hove singularities), namely the Brinkman–Rice metal–insulator transition (BRT)
where the copper-like band becomes completely flat (see below). Finally, along cut C,
in addition to the BRT, a heavy fermion regime with exponentially small 1− nd and a
conic band-crossing point below the chemical potential appears immediately above half
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Figure 2. The phase diagrams fortpd = 1.3 eV, tpp = 0.65 eV andV = 1.25 eV (a), and for
tpd = 1.3 eV, tpp = 0.8 eV andV = 0.5 eV (b). Notice the difference in the shapes of the
heavy fermion (HF) region. The solid bold lines represent BRT, the dashed bold lines a smooth
crossover between HF and normal metal behaviour. The dotted line in (b) corresponds to the
analytical result for the HF to normal metal crossover, obtained in the limit of smalln0 − 1.
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Figure 3. The bandstructure energy scales: the bandwidth of the lowest band (solid lines),
µ̃− εcr (dashed lines), and̃µ− εvHs (dotted lines), computed along the three cuts A, B, and C
in figure 2(a).

filling, extends over a finite range of dopings and then terminates via a smooth crossover
into a conventional metal. In the case of cut C, the phase separation region is located
above this crossover. In the metallic phase, the conic point eventually crosses the chemical
potential. Fortpp > t0 both van Hove singularities and the tangency already appear below
half filling. The only other qualitative difference from thetpp < t0 case is the possible
appearance of re-entrant heavy fermion behaviour below the BRT critical value of1(0) (see
cut B in figure 2(b)). Numerical calculations show that the features of the phase diagram
persist at finite temperature, with the corresponding values of1(0) decreasing as temperature
increases. We are now in a position to discuss these features in more detail.

The mean-field bandstructure is characterized by three energy scales, namely the
bandwidth of the lower band, the differencẽµ − εvHs between the Fermi level and the
van Hove singularity (corresponding to the saddle point in the lowest band dispersion) and
the difference between the Fermi level and the energyεcr = −t ′ 2pd/tpp of the band crossing
point. The values of these three quantities, computed along the three cuts A, B and C of
figure 2(a) are plotted in figure 3. One can see that the lowest energy scale in the metallic
phase above half filling over an extended range of dopings is provided byµ̃ − εcr , which
vanishes at some particular fillingncr(1(0)), and at small values of|n0− ncr | � 1 depends
linearly on filling, µ̃− εcr ∝ ncr − n0.

The FSs that emerge when the Fermi level lies close toεcr are shown in figure 4 [24].
It is a striking feature of the present model that when the band crossing occurs exactly
at the Fermi level, the FS is formed by the straight lineskx = kcr and ky = kcr (with
kcr = π − πncr/4), and is therefore perfectly nested along the coordinate axes. It is
well known [25] that in such a situation the quasiparticle relaxation rate becomes linear
in temperature. One can therefore expect that as the value of filling approachesncr , the
quasiparticle relaxation rate undergoes a crossover to the linear temperature dependence;
this is also the case when, at some fixed value ofn0, temperature increases beyond a certain
crossover valueT ∗.

The simplest way to exemplify this behaviour is to replace the nested parts of the FS
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Figure 4. The Fermi surfaces forn0 = 1.23 (dotted lines),n0 = 1.46 (n0 ≈ ncr , solid lines), and
n0 = 1.64 (dashed lines). The bare parameters of the system aretpd = 1.3 eV, tpp = 0.65 eV,
V = 1.25 eV and1(0) = 3.26 eV (cut B in figure 2(a)). The numbers 0, 1 and 2 indicate the
number of filled bands in each region of the Brillouin zone.

by two nearly straight segments of lengthL and curvature radiusR � L, also assuming
that the velocities of quasiparticles on these segments are equal tov and antiparallel to each
other. One can then estimate the contribution of these segments to the off-shell decay rate
due to a weak interparticle contact interaction,Uδ(r− r ′). Forω > vL2/R, and when the
momentum vectorp lies at the middle of the straight segment of the FS, the decay rate is
linear in frequency, Im6(ω,p) ≈ (3U2L2ω)/(16π3v2) whereas at very low frequencies,
ω � vL2/R, one gets

Im6(ω,p) ≈ RU2

(2πv)3

[
2ω2 ln

vL2

ωR
− 1

3
ω2

]
. (6)

The finite-temperature on-shell quasiparticle relaxation rate can be estimated by substituting
T → ω in these expressions. The quantityL2/R measures the deviation of the nearly
flat segments of the Fermi surface from the tangent straight lines and provides a new low-
energy scale,vL2/R. As expected [25], for values ofω, T � vL2/R the decay rate, Im6,
is proportional tox = max{ω(> 0), T }, whereas at low energies the behaviour reduces to
the 2D Fermi liquid result Im6 ∝ −x2lnx [26].

For our mean-field band structureR ∝ (µ̃ − εcr )−2 in the limit of |µ̃ − εcr/µ̃| � 1
andL ∼ π . Sinceµ̃ − εcr ∝ ncr − n0, it follows that the crossover scaleT ∗ = vL2/R ∝
(n0 − ncr)2. As a result, the linearity of the relaxation rate survives over a wider range of
dopings than in the van Hove scenario for whichT ∗vH ∝ |(n0− ncr)/ln(n0− ncr)|.

Let us now take a closer look at the band-crossing point. Expanding the dispersion law
about this point leads to the following two branches

ε1,2(k) = A(k)∓
√
B(k)(kx + ky − 2kcr )2− C(k)(kx − ky)2 (7)

where A,B and C are smooth functions of momentumk. Note that the square-root
behaviour in (7) is associated with the non-analytic behaviour of the matrix elements
of the unitary transformation which diagonalizes the mean field Hamiltonian. More
precisely, the limiting values of these coefficients atk → kcr depend on the direction
of approach. This affects, for example, the interband matrix element of the quasi-particle
position operator which diverges at the crossing point asr12(k) ∝ (ε1(k) − ε2(k))

−1.
On the other hand, the corresponding interband matrix element of the velocity operator
v12 = (dr/dt)12 = i(ε1 − ε2)r12 remains finite atk → kcr but its limiting values still
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Figure 5. The rigid-band estimate for the interband term in the optical(ab)-plane conductivity
(�−1 cm−1) versus frequency (eV) atn0 = 1.44, tpd = 1.3 eV, tpp = 0.65 eV,V = 1.25 eV,
and1(0) = 3.26 eV. We used the value of 12̊A for the interplane spacing.

depend on the direction of approach. In turn, the leading interband contribution to the
optical conductivity (ignoring all quasi-particle interactions) [27]

Reσ 12
αβ =

e2

2πω

∫
vα12(k)v

β

21(k) [nF (ε1(k))− nF (ε2(k))] δ(ε1(k)− ε2(k)+ ω) d2k (8)

(the indicesα, β take valuesx or y) displays an anomaly associated with the peculiar
behaviour ofv12 in the presence of band crossing. The integration in (8) leads to the result
sketched in figure 5. Note the presence of two square-root singularities in the frequency
derivative of the conductivity: one at the threshold frequency

ωt = 2
t
′2
pd + tpp1

3t
′2
pd + 2tpp1

|µ̃− εcr | (9)

below which Reσ 12
αβ(ω) is equal to zero, and another atω′t = ωt(3t

′2
pd + 2tpp1)/t

′2
pd . These

singularities originate from the tangency between the ellipseε2(k) = ε1(k) + ω and the
two borders of the stripẽµ < ε1(k) < µ̃ + ω. At larger frequencies,ω � ωt, ω

′
t (but ω

is still much smaller than the bandwidths) Reσ 12(ω) approaches a constant value. Finally,
if the band-crossing occurs precisely at the Fermi level, the independence of Reσ 12(ω)

on frequency survives down toω = 0. It is amusing to note the resemblance of the
threshold behaviour in figure 5 to the ‘mid-infrared peak’ observed in optical conductivity
experiments [28]. Within this scenario the weak doping dependence of the ‘peak’ position
could only be accounted for if the system is sufficiently far below the critical filling,ncr .

It is easy to see that the value of the threshold frequency and the nature of singularities
at ω = ωt, ω′t is in fact unaffected by the RPA corrections. The latter, in principle, might
add excitonic features to the profile of Reσαβ(ω) (δ-functional peaks below the threshold
or Lorentzian peaks above the threshold). We have checked, however, that excitonic bound
states do not occur for physically relevant interaction strengths (V < W 2/ωt , whereW is
the conduction electron bandwidth). Also, the effects of resonances above threshold are
small for ω ∼ ωt . Thus, at frequencies of the order ofωt RPA modifies the rigid-band
result by a factor of order unity.

We close by noting that when the Fermi level lies in the vicinity of a band-crossing
point, one should be able to observe the phenomenon ofmagnetic breakdown[29], namely,
the restructuring of the FS that takes place at sufficiently high magnetic fields through the
tunnelling of electrons between different FS sheets. This phenomenon and its consequences
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for magneto-transport in weak fields in the presence of a conic point will be described
elsewhere [30].

We take pleasure in thanking R J Gooding, M I Kaganov and I E Trofimov for stimulating
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